APPENDIX H UPTAKE FACTORS

Table H-1. Uptake Factors for Concentrations in Food Items

COPEC	Soil to Plants (Cp)	Reference	Soil to Worms (Cw)	Reference	Soil to Small Mammals (Cm)	Reference
Antimony	EXP(0.938*LN(Cs)-3.233)	EPA, 2005	Cs	EPA, 2005	0.001*50*Cp	EPA, 2005 ^(a)
Cadmium	EXP(0.546*LN(Cs)-0.475)	Bechtel-Jacobs, 1998	EXP(0.795*LN(Cs)+2.114)	Sample et al., 1999	EXP(0.4723*LN(Cs)-1.2571)	Sample et al., 1998b
Chromium	0.041*Cs	Bechtel-Jacobs, 1998	0.306*Cs	Sample et al., 1999	EXP(0.7338*LN(Cs)-1.4599)	Sample et al., 1998b
Copper	EXP(0.394*LN(Cs)+0.668)	Bechtel-Jacobs, 1998	0.515*Cs	Sample et al., 1999	EXP(0.1444*LN(Cs)+2.042)	Sample et al., 1998b
Lead	EXP(0.561*LN(Cs)-1.328)	Bechtel-Jacobs, 1998	EXP(0.807*LN(Cs)-0.218)	Sample et al., 1999	EXP(0.4422*LN(Cs)+0.0761)	Sample et al., 1998b
Mercury	0.652*Cs	Bechtel-Jacobs, 1998	1.693*Cs	Sample et al., 1998a	0.0543*Cs	Sample et al., 1998b
Selenium	EXP(1.104*LN(Cs)-0.677)	Bechtel-Jacobs, 1998	EXP(0.733*LN(Cs)-0.075)	Sample et al., 1999	EXP(0.3764*LN(Cs)-0.4158)	Sample et al., 1998b
Silver	0.014*Cs	Bechtel-Jacobs, 1998	2.045*Cs	Sample et al., 1998a	0.004*Cs	Sample et al., 1998b
Thallium	$O_{(p)}$	Efroymson et al., 1997	0.263*Cs	USACHPPM, 2004	0.102*Cs	Sample et al., 1998b
Zinc	EXP(0.554*LN(Cs)+1.575)	Bechtel-Jacobs, 1998	EXP(0.328*LN(Cs)+4.449)	Sample et al., 1999	EXP(0.0706*LN(Cs)+4.3632)	Sample et al., 1998b
Total PCBs	0.005*Cs	Travis and Arms, 1988	1.1*Cs	Jager, 1998 ^(c)	3.5*Cs	Travis and Arms, 1988
Total DDT ^(e)	EXP(0.7524*LN(Cs)-2.5119)	Bechtel-Jacobs, 1998	EXP(0.8561*LN(Cs)+2.1287)	EPA, 2005	EXP(0.663*LN(Cp)+2.3833)	EPA, 2005 ^(a)
2,6-DNT	2.35*Cs	Travis and Arms, 1988	Cs	Assumed ^(d)	0	ATSDR, 1998
HMX	EXP(1.818+0.7458*LN(Cs))	CH2MHill, 2005	1*Cs	CH2MHill, 2005	0	Assumed negligible
HPAH ^(f)	EXP(0.975*LN(Cs)-2.0615)	EPA, 2005	1.33*Cs	Jager, 1998	0	EPA, 2005
LPAH ^(g)	12.2*Cs	EPA, 2005	4.4*Cs	Jager, 1998	0	EPA, 2005

DDT - dichlorodiphenyltrichloroethane

2,6-DNT – 2,6-dinitrotoluene

EXP – exponential

LN – natural log

PCB – polychlorinated biphenyl

 C_p – concentration in plant

 $C_{\rm w}$ – concentration in worm

C_m- concentration in mammal

- (a) The regression equations cited in USEPA (2005) for uptake of antimony and Total DDT to small mammals is based on a diet comprised of 100% invertebrates (worms). To be consistent with wildlife at this site, small mammal concentrations were based on a herbivorous diet (i.e., 100% plants) as in the case of the vole.
- (b) Assumed to be negligible.
- (c) To determine earthworm uptake factors for PCBs: regression equations from Jager, 1998 were used as follows:

log Kww = 0.87*log Kow - 2

where Log Kow = 6.99 and Kww = 12058.7; Then Kww converted to Kdw. Assuming 16% solids, results in Kdw = 75366.8

Kd = foc * Koc. If foc= 0.01 (assumes 1% organic carbon content) and Koc = 1096478.2, then Kd = 10965.

BAF = Kww (L/Kg worm dw) / Kd (L/kg soil dw); thus, BAF = 12058.7/10965 = 1.1

- (d) Due to the lack of uptake factors to worms, their concentrations were conservatively assumed to be equivalent to soil concentrations (USEPA, 2005).
- (e) Total DDT is the sum of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD.
- (f) HPAH uptake factors based on benzo(a)pyrene.
- (g) LPAH uptake factors based on naphthalene.

Table H-2. Bioaccumulation Factors for COPECs Based on Maximum Soil Concentrations

СОРЕС	Maximum Cs (mg/kg)	Soil to Plants (Cp)	Reference	Soil to Worms (Cw)	Reference	Soil to Small Mammals (Cm)	Reference
Antimony	0.67	0.027	EPA, 2005	0.67	EPA, 2005	0.001	EPA, 2005 (a)
Cadmium	1.40	0.747	Bechtel-Jacobs, 1998	10.8	Sample et al., 1999	0.333	Sample et al., 1998b
Chromium	114.00	4.67	Bechtel-Jacobs, 1998	34.9	Sample et al., 1999	7.50	Sample et al., 1998b
Copper	62.00	9.92	Bechtel-Jacobs, 1998	31.9	Sample et al., 1999	14.0	Sample et al., 1998b
Lead	234.00	5.65	Bechtel-Jacobs, 1998	65.7	Sample et al., 1999	12.0	Sample et al., 1998b
Mercury	0.482	0.314	Bechtel-Jacobs, 1998	0.82	Sample et al., 1998a	0.026	Sample et al., 1998b
Selenium	0.70	0.343	Bechtel-Jacobs, 1998	0.71	Sample et al., 1999	0.577	Sample et al., 1998b
Silver	4.81	0.067	Bechtel-Jacobs, 1998	9.84	Sample et al., 1998a	0.019	Sample et al., 1998b
Thallium	0.185	$0_{(p)}$	Efroymson et al., 1997	0.049	USACHPPM, 2004	0.019	Sample et al., 1998b
Zinc	110.00	65.3	Bechtel-Jacobs, 1998	399.7	Sample et al., 1999	109.4	Sample et al., 1998b
Total PCBs	0.07	0.00035	Travis and Arms, 1988	0.1	Jager, 1998 ^(c)	0.245	Travis and Arms, 1988
Total DDT ^(e)	0.36	0.04	Bechtel-Jacobs, 1998	3.50	EPA, 2005	1.23	EPA, 2005 ^(a)
2,6-DNT	0.20	0.47	Travis and Arms, 1988	0.20	Assumed ^(d)	0	ATSDR, 1998
HMX	0.69	4.67	CH2MHill, 2005	0.69	CH2MHill, 2005	0	Assumed negligible
HPAH ^(f)	0.1760	0.023	EPA, 2005	0.234	Jager, 1998	0	EPA, 2005
LPAH ^(g)	0.0340	0.415	EPA, 2005	0.150	Jager, 1998	0	EPA, 2005

DDT - dichlorodiphenyltrichloroethane

2,6-DNT – 2,6-dinitrotoluene

EXP - exponential

PCB – polychlorinated biphenyl

 C_s – concentration in soil

 C_p – concentration in plant

C_w – concentration in worm

C_m- concentration in mammal

- (a) The regression equations cited in USEPA (2005) for uptake of antimony and Total DDT to small mammals is based on a diet comprised of 100% invertebrates (worms). To be consistent with wildlife at this site, small mammal concentrations were based on a herbivorous diet (i.e., 100% plants) as in the case of the vole.
- (b) Assumed to be negligible.
- (c) To determine earthworm uptake factors for PCBs: regression equations from Jager, 1998 were used as follows:

log Kww = 0.87*log Kow - 2

where Log Kow = 6.99 and Kww = 12058.7; Then Kww converted to Kdw. Assuming 16% solids, results in Kdw = 75366.8.

Kd = foc * Koc. If foc= 0.01 (assumes 1% organic carbon content) and Koc = 1096478.2, then Kd = 10965.

BAF = Kww (L/Kg worm dw) / Kd (L/kg soil dw); thus, BAF = 12058.7/10965 = 1.1

- (d) Due to the lack of uptake factors to worms, their concentrations were conservatively assumed to be equivalent to soil concentrations (USEPA, 2005).
- (e) Total DDT is the sum of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD.
- (f) HPAH uptake factors based on benzo(a)pyrene.
- (g) LPAH uptake factors based on naphthalene.

Table H-3. Bioaccumulation Factors for COPECs Based on 95% UCL Soil Concentrations

COPEC	95% UCL Cs (mg/kg)	Soil to Plants (Cp)	Reference	Soil to Worms (Cw)	Reference	Soil to Small Mammals (Cm)	Reference
Antimony	0.264	0.011	EPA, 2005	0.26	EPA, 2005	0.001	EPA, 2005 ^(a)
Cadmium	0.436	0.395	Bechtel-Jacobs, 1998	4.3	Sample et al., 1999	0.192	Sample et al., 1998b
Chromium	72.486	2.97	Bechtel-Jacobs, 1998	22.2	Sample et al., 1999	5.38	Sample et al., 1998b
Copper	25.878	7.03	Bechtel-Jacobs, 1998	13.3	Sample et al., 1999	12.3	Sample et al., 1998b
Lead	66.740	2.80	Bechtel-Jacobs, 1998	23.9	Sample et al., 1999	6.9	Sample et al., 1998b
Mercury	0.143	0.093	Bechtel-Jacobs, 1998	0.24	Sample et al., 1998a	0.008	Sample et al., 1998b
Selenium	0.443	0.207	Bechtel-Jacobs, 1998	0.51	Sample et al., 1999	0.486	Sample et al., 1998b
Silver	2.550	0.036	Bechtel-Jacobs, 1998	5.22	Sample et al., 1998a	0.010	Sample et al., 1998b
Thallium	0.121	$0^{(b)}$	Efroymson et al., 1997	0.032	USACHPPM, 2004	0.012	Sample et al., 1998b
Zinc	73.803	52.4	Bechtel-Jacobs, 1998	350.7	Sample et al., 1999	106.4	Sample et al., 1998b
Total PCBs	0.070	0.00035	Travis and Arms, 1988	0.077	Jager, 1998 ^(c)	0.245	Travis and Arms, 1988
Total DDT ^(e)	0.121	0.02	Bechtel-Jacobs, 1998	1.38	EPA, 2005	0.72	EPA, 2005 ^(a)
2,6-DNT	0.185	0.44	Travis and Arms, 1988	0.19	Assumed ^(d)	0	ATSDR, 1998
HMX	0.690	4.67	CH2MHill, 2005	0.69	CH2MHill, 2005	0	Assumed negligible
HPAH ^(f)	0.093	0.013	EPA, 2005	0.124	Jager, 1998	0	EPA, 2005
LPAH ^(g)	0.021	0.256	EPA, 2005	0.092	Jager, 1998	0	EPA, 2005

DDT - dichlorodiphenyltrichloroethane

2,6-DNT – 2,6-dinitrotoluene

EXP - exponential

PCB – polychlorinated biphenyl

C_s – concentration in soil

C_p – concentration in plant

C_w – concentration in worm

C_m- concentration in mammal

- (a) The regression equations cited in USEPA (2005) for uptake of antimony and Total DDT to small mammals is based on a diet comprised of 100% invertebrates (worms). To be consistent with wildlife at this site, small mammal concentrations were based on a herbivorous diet (i.e., 100% plants) as in the case of the vole.
- (b) Assumed to be negligible.
- (c) To determine earthworm uptake factors for PCBs: regression equations from Jager, 1998 were used as follows:

log Kww = 0.87*log Kow - 2

where Log Kow = 6.99 and Kww = 12058.7; Then Kww converted to Kdw. Assuming 16% solids, results in Kdw = 75366.8.

Kd = foc * Koc. If foc= 0.01 (assumes 1% organic carbon content) and Koc = 1096478.2, then Kd = 10965.

BAF = Kww (L/Kg worm dw) / Kd (L/kg soil dw); thus, BAF = 12058.7/10965 = 1.1

- (d) Due to the lack of uptake factors to worms, their concentrations were conservatively assumed to be equivalent to soil concentrations (USEPA, 2005).
- (e) Total DDT is the sum of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD.
- (f) HPAH uptake factors based on benzo(a)pyrene.
- (g) LPAH uptake factors based on naphthalene.

Table H-4. Bioaccumulation Factors for COPECs Based on Background Soil Concentrations

СОРЕС	Background Cs (mg/kg)	Soil to Plants (Cp)	Reference	Soil to Worms (Cw)	Reference	Soil to Small Mammals (Cm)	Reference
Antimony	0.37	0.016	EPA, 2005	0.37	EPA, 2005	0.001	EPA, 2005 (a)
Cadmium	0.64	0.487	Bechtel-Jacobs, 1998	5.8	Sample et al., 1999	0.230	Sample et al., 1998b
Chromium	107	4.39	Bechtel-Jacobs, 1998	32.7	Sample et al., 1999	7.16	Sample et al., 1998b
Copper	48.8	9.02	Bechtel-Jacobs, 1998	25.1	Sample et al., 1999	13.5	Sample et al., 1998b
Lead	30.7	1.81	Bechtel-Jacobs, 1998	12.7	Sample et al., 1999	4.9	Sample et al., 1998b
Mercury	0.42	0.274	Bechtel-Jacobs, 1998	0.71	Sample et al., 1998a	0.023	Sample et al., 1998b
Selenium	0.24	0.105	Bechtel-Jacobs, 1998	0.33	Sample et al., 1999	0.386	Sample et al., 1998b
Silver	0.21	0.003	Bechtel-Jacobs, 1998	0.43	Sample et al., 1998a	0.001	Sample et al., 1998b
Thallium	1.5	0	Efroymson et al., 1997	0.395	USACHPPM, 2004	0.153	Sample et al., 1998b
Zinc	92	59.1	Bechtel-Jacobs, 1998	377.0	Sample et al., 1999	108.0	Sample et al., 1998b

 C_s – concentration in soil C_p – concentration in plant C_w – concentration in worm C_m - concentration in mammal

⁽a) Note that antimony is modeled using a diet of 100% plants to small mammals, to be consistent with the wildlife at this site (i.e., herbivorous diet).